wolk@

Storage Manager Overview

Brief Overview

The WalkMe Player stores data for maintaining WalkMe's player state, monitoring compilation of
Walk-Thru playback, and collecting Analytics. To this end, WalkMe uses first-party cookies, third-
party cookies (local storage), and first-party local storage. No personal data is saved and no
information about user usage of the website is monitored.

Cookies set by WalkMe are preceded by a “wm-” in their name. WalkMe uses different cookies
depending on your WalkMe configuration; for example, we can track user information for completing
Walk-Thrus using Cookies or local storage.

Looking to create your own cookies with WalkMe? Check out this article on WalkMe Data.
WalkMe stores data on the user’s browser for a number of reasons, including:

1. Smart Walk-Thru state (whether the user is in the middle of a Smart Walk-Thru)
2. Autoplay status (whether an item has already played)

3. Goal completion

4. WalkMe data

Note

The User extension does not require use of 3rd party cookies

Definitions

1. Storage method: This is how the storage is saved on the browser, whether first-party (same
domain) or third-party (cross-domain)

2. Storage type: This where the storage is saved on the browser (local storage vs. cookies)

3. Browser storage vs. server storage: Whether the data is stored only on the end user’s
current browser, or also gets sent to WalkMe’s servers (more on this below)

71 Stevenson Street, Floor 20 San Francisco, CA 94105 | 245 Fifth Avenue, STE 1501 New York, NY, 10016 | 421 Fayetteville St STE 215 Raleigh, NC
27601 www.walkme.com

https://support.walkme.com/knowledge-base/how-and-why-does-walkme-use-cookies/
https://support.walkme.com/knowledge-base/walkme-data/
https://www.walkme.com

wolk@

What is Server Storage?

Server storage syncs the user state between different browsers through the WalkMe player server.
The following user state is stored in the server storage and synced to the different browsers:

1. Autoplay once evaluations
2. Goal Completion

3. TeachMe course completion
4. WalkMe data

Please note

Keep in mind the following regarding server storage:

e It requires the user ID to be defined and does not work with the WalkMe generated user ID

e It requires the user ID to be found in the client on runtime

 Data is synced periodically every 24 hours (can be configured by R&D), which means that if
you already have a state in the client, and the state changed in another browser, it will take a
couple of hours for it to be updated

Extension Storage

Extension storage is intended to increase the range of WalkMe storage options, and eventually
become the default storage setting for implementations with an extension. WalkMe-related data will
be securely stored within the extension settings and doesn’t require adjustments to browser security
settings.

Extension storage is compatible with Chrome, Firefox, Edge Chromium, Safari.

Storage API

The storage API is a new browser-based API that provides a straightforward and unified interface for
managing different types of storage. Use it to manage data more efficiently and selectively, without
possibly losing important information or having to log back in.

It replaces the need for clearing browser cache and cookies for testing or troubleshooting WalkMe
content that relies on browser-level data. Clearing cache and cookies has been a common way to
reset the WalkMe-related data on the local level, but it also deletes all stored data and requires the
user to log back into the website.

71 Stevenson Street, Floor 20 San Francisco, CA 94105 | 245 Fifth Avenue, STE 1501 New York, NY, 10016 | 421 Fayetteville St STE 215 Raleigh, NC
27601 www.walkme.com

https://www.walkme.com

wolk@

Additionally, the storage API is a useful part of WalkMe’s gradual rollout of extension storage. With
extension storage, clearing browser cache and cookies is not an option. Instead, use the storage API
when needing to clear WalkMe data.

The API is available in the browser developer tools console. To access the console, right click on the
web page and select inspect. Then, click on the console tab.

[w ﬂ Elements Consaole Sources Metwork
M ®©® topv @ Filter
>

Here is the list of available commands:
WalkMeAPI.storage.getAll()

e Returns all WalkMe data stored locally in the current browser
e Use this command to see all pre-existing data and the data you set with any of the below keys

WalkMeAPI.storage.getAll()

v {wm-ds-b: m-ds-L Ff6e-4867-b872-efb

Y, wm-ds-s: []', wm-ueug: '6478b@d6-2ee9-4837-8bb8-6a328£292274°, .} @

- 1 "6d
wm-ds-b: "[]"
wm-ds-hb: "[]"
wm-ds-1b: "{}"
wm-ds-1bb: "{}"
wm-ds-1bp: "[]
wm-ds-1fb: "{}"
wm-ds-s: "[]"

»wm-hb: {sendBaseTime: 1681028422879}
wm-1lnchr-ply-ssn: "al7d688b- 4907-8b6f-92705ed9d699™

» um-session-per-user: {bf7ed

» wm-smtp-init: {typ
wm-ueug: "6478b@d6-2e

{.}, 6478b0d6-2ee9-4837-8bbd-6a328292274: {.}}

-4837-8bb0-6a328¥292274"
wm-wmy: " b@d6-2ee9-4337-8bb@-6a328F292274"

» [[Prototype]]: Object

WalkMeAPI.storage.removeAll()

e Removes all WalkMe data stored locally in current browser
e Default WalkMe data keys will be reset after a page refresh

WalkMeAPI.storage.setltem()

71 Stevenson Street, Floor 20 San Francisco, CA 94105 | 245 Fifth Avenue, STE 1501 New York, NY, 10016 | 421 Fayetteville St STE 215 Raleigh, NC
27601 www.walkme.com

https://www.walkme.com

wolk@

e Use to create a custom data key for testing purposes
¢ Accepts two mandatory fields and one optional:

¢ Key: String name of the key you want to add to the storage. We recommend adding “wm-" by
default as a prefix to ensure the key is unique.

e Value: The value of the key you want to add; can be a string or number

¢ (optional) Expiry time in seconds: Amount of seconds you'd like the key to exist in your
local storage. If not specified, a default value of two years will be assigned.

e Examples:
o WalkMeAPI.storage.setltem(‘test-1’,123) sets a key with the name ‘wm-test-1’ and a
value of 123 for two years. If you set this key and run WalkMeAPI.storage.getAll() you
will get the below result:

e WalkMeAPI.storage.setltem(‘test-2’,'Test value’, 360) sets a key with the name ‘wm-test-2’
and a value of ‘Test value’ for 360 seconds.

WalkMeAPI.storage.getAll()
v {wm-ds-b: '[]', wm-ds-Lb: '{}', wm-cseu-id: '6d7eld59-ff6e-4867-b0872-efba9466d67b"', wm-test-2: 'Test value', wm-ds-s: '[]', .} B3
wm-cseu-id: "6d7eld59-ffbe-4867-b@72-efbad468d67b"
wm-ds-b: "[]"
wm-ds-hb: "[]"
wm-ds-1b: "{}"

wm-ds-1bb: "{}"

wm-ds-1bp: "[]1"

wm-ds-1fb: "{}"

wm-ds-s: "[]"

» wm-hb: {sendBaseTime: 1681028422879}

wm-1lnchr-ply-ssn: "al7d688b-26eb-49

» wm-session-per-user: {bf7ed7d7-4ec5-45f9-aa72 -}, 6478b0d6-2ee9-4837-8bb0-6a328F292274: {..}}

» wm-smtp-init: {type: 6}
wm-test-1: 123

WalkMeAPI.storage.getExpiryDate()

e Returns the date and time when the data key will expire
e Accepts the key name
e Example:

o WalkMeAPI.storage.getExpiryDate(‘wm-test-2")

WalkMeAPI.storage.getExpiryDate('wm-test-2')

f ~
AU

'Sun Apr B89 2023 11:29:27°

Please reach out to your WalkMe contact or contact Support if you have any questions or need

71 Stevenson Street, Floor 20 San Francisco, CA 94105 | 245 Fifth Avenue, STE 1501 New York, NY, 10016 | 421 Fayetteville St STE 215 Raleigh, NC
27601 www.walkme.com

https://support.walkme.com/submit-a-ticket/
https://www.walkme.com

wolk@

assistance with your storage settings.

71 Stevenson Street, Floor 20 San Francisco, CA 94105 | 245 Fifth Avenue, STE 1501 New York, NY, 10016 | 421 Fayetteville St STE 215 Raleigh, NC
27601 www.walkme.com

https://www.walkme.com

